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We present a multigrid-continuation method for computing the transition from two-dimen- 
sional Taylor-vortex to three-dimensional wavy-vortex flow in the Taylor experiment. The 
method is also used to continue the path of travelling wave solutions as the Reynolds number 
is varied. The steady Navier-Stokes equations in a rotating frame of reference and an integral 
constraint are approximated by second-order accurate finite differences. For the convective 
terms in the conservation equations an upwind discretization controlled by the eigenvalues of 
their Jacobians is used. An iterative method for finding the speed of the travelling wave 
involves switching between the unsteady equations and the steady equations in a rotating 
frame. This is used only once to get the first wavy-vortex solution. A comparison of the results 
with experimental and numerical data shows good accuracy for the method and the validity 
of the travelling-wave formulation. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

In a brilliant paper G. I. Taylor [24] reported his theoretical and experimental 
investigations of the flow of an incompressible fluid between concentric rotating 
cylinders. This was the start of a steady stream of publications dealing with the 
different flow configurations in the Taylor experiment. 

In this study we consider the configuration in which the inner cylinder rotates 
with an angular velocity o while the outer cylinder is at rest. Furthermore the 
investigation is restricted to the infinitely long cylinder case; i.e., the ratio of the 
axial length of the cylinder to the gap width is assumed to be so large that end 
effects can be neglected. The flow is thus assumed to be periodic in the axial 
direction with a wavelength L. 

Among others, the following flow patterns are observed in experiments. For a 
moderately low angular velocity w, the Couette velocity profile which only depends 
on the radius is obtained. When OJ is increased to a certain critical value, axisym- 
metric Taylor vortices occur (Fig. 1). After a further increase in w the wavy-vortex 
or travelling-wave flow which has one specific azimuthal frequency is observed 
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FIG. 1. Photograph of Taylor vortices, q = 0.875. Enlargement of a section of Fig. 15b in [4] 
(courtesy of D. Coles). 

(Fig. 2). It was experimentally analyzed in great detail by Coles [4]. For somewhat 
higher values of w, modulated wavy vortices which seem to be travellling waves 
with two characteristic frequencies, are generated [ 111. 

Many analytical and numerical studies have been conducted to determine the 
critical Reynolds number, Re,, at which transition from Couette to Taylor-vortex 
flow occurs. Di Prima gives a brief survey of these papers in [6]. Already in 1966 
Meyer [ 161 used a numerical method to compute Taylor vortices for Re > Re,. 
More recent numerical results on Taylor-Couette flow are those of Meyer-Spasche 
and Keller [17], Fasel and Booz [lo], Moser, Moin, and Leonard [18] and 
Marcus [14, 151. In [17] a method for the solution of the steady axisymmetric 
Navier-Stokes equations composed of finite differences in radial and Fourier expan- 
sion in axial direction was developed. By applying Keller’s continuation technique 
[12] the bifurcation point from Couette to Taylor-vortex flow was determined for 
different geometries. Fasel and Booz used a spatially fourth-order accurate dif- 
ference scheme to study Taylor vortices at very high Reynolds numbers with a wide 
gap between the cylinders. In [18, 14, IS] spectral methods based on Chebyshev 
polynomials and Fourier modes were used to compute wavy vortices by solving the 
time-dependent Navier-Stokes equations. The results showed a remarkable agree- 
ment between the experimental and the numerical data. 

The purpose of this work is to devise and use a steady-state method for the com- 
putation of the three-dimensional wavy-vortex flow. Thus in contrast to the studies 
of Moser, Moin, and Leonard and Marcus a steady travelling-wave solution of the 
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FIG. 2. Photograph of wavy vortices. Re = 154, q = 0.875 (courtesy of D. Coles). 

conservation equations is sought. This formulation contains the azimuthal speed of 
the travelling-wave, Q, as an unknown. To make Sz determinate an integral con- 
straint (a phase condition in the azimuthal direction) is imposed. This boundary 
value formulation allows us to calculate physically stable and unstable solutions. 
Using Keller’s continuation method [12] the transition from Taylor-vortex to 
wavy-vortex flow in Coles’ experiment [4] is studied for Reynolds numbers up to 
Re = 250. These experiments show that Taylor vortices switch immediately to wavy 
vortices with four waves. We seek to confirm this numerically or to show that there 
is a two-wave state in between which undergoes a period doubling transition to the 
four-wave state (we do not find this to be the case). Our methods are also capable 
of determining Taylor-vortex flows. We compute these to check out the numerics. 
In order to solve the difference equations on the modest machines available we have 
used a multigrid procedure. 

The multigrid concept in the full approximation storage (FAS) scheme is applied 
to efficiently solve the large. linear systems which occur in the continuation method. 
For the axisymmetric problem there already exist multigrid-continuation algo- 
rithms of Dinar and Keller [S] and Bolstad and Keller [ 1,2]. The method in [S] 
contains too many parameters which have to be adjusted during the continuation. 
It uses the staggered grid technique which is not easily applicable to a general 
curvilinear coordinate system and is not well suited for concurrent computers. In 
order to save storage space Bolstad and Keller [l] compute Taylor vortices with 
a streamfunction azimuthal velocity formulation. In three dimensions, however, this 
yields a system of equations with six unknowns either for the vorticity vector and 
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the vector potential or for the vorticity and the velocity vector. Therefore we use the 
Navier-Stokes equations formulated in primitive variables (i.e., only four 
unknowns). These are solved with a difference scheme on a nonstaggered mesh. The 
results contain: 1. a comparison of numerical and experimental data which show (a) 
the accuracy of the approximation and (b) the applicability of the steady state 
formulation; and 2. a computation of the transition from the Taylor-vortex flow to 
the wavy-vortex flow with four azimuthal waves. 

The continuous problem is formulated in Sections 2 and 3. The method of solu- 
tion is discussed in Section 4. The multigrid-continuation method is presented in 
Section 5 followed by a description of the procedure used to switch the solution 
branch. Section 7 contains the discussion of the results. 

2. FORMULATION OF THE CONSERVATION EQUATIONS 

Let Q E (p, U, v, w)’ be the vector whose components are the pressure and the 
velocity components in the radial, azimuthal and axial (r, 8, z) coordinate direc- 
tions, respectively. Then the nondimensionalized Navier-Stokes equations for an 
incompressible viscous fluid read 

a$ =(Q) +‘@tQ) + WQ) at+- - ar r ae dz+D(Q)=O. 

The vectors &, E, i? G, D are defined as 

& = (0, u, v, W)T 

E = (E, , E,, E,, Ed= = (u, u2 + p, uv, WV)= 

P= (P,, &=,, &,, I’,)‘= (v, uv, v2 + p, vw)T 

G = (G,, G2, G3, GJ= = (w, uw, VW, w2 +- p)= 

D = (D,, D,, D,, DA= 

(1) 

(2) 

The Reynolds number Re is taken as 

Re&!!!5, 
v 

(3) 
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where the difference of the radii of the outer and the inner cylinder is 6 = Rz - RI, 
the azimuthal velocity of the inner cylinder is oR,, and the kinematic viscosity 
is v. The aspect ratio of period to gap width is given by r= L/6 and the radius ratio 
is denoted by q = R,/R,. The integration domain for the system of equations is 
given by 

? 1 
r,r-<r<-= 

1-V l-/, 

r 
IZI <- 2 (4) 

Here the integer q limits the wavelength in the O-direction. 
Experiments have shown that wavy vortices travel with a uniform angular 

velocity a = Q(Re, q, r) [4]. For that reason we seek solutions in the form of 
travelling waves with respect to 8. Thus the 8 and t variations are assumed to occur 
only in the combination cp = 8 - Bt. This is equivalent to seeking steady flows in a 
rotating coordinate system. Taylor vortices are also steady flows in this moving 
coordinate system since they are independent of 8. In this new frame we have 
a/& = -s2(a/LJ(p) and a/@ = a/%3 The reformulated system (1) now becomes, for 
travelling waves, 

WQ) 1 WQ, Q) + WQ) ar+; a9 
T+D(Q)=O. 

Here we have introduced 

F=(F1,F2, F3, FdT = (v, uV, VU+ p, VW)~, (6) 

where V= u - Qr takes into account the rotation of the coordinate system with 
angular velocity G?. The quantities E, G, D are given in Eq. (2). 

Note that our formulations (1) and (5) employ directly the continuity equation 
and the pressure enters only through the components of its gradient in each of the 
mometum equations. Thus we do not employ a Poisson equation for the pressure. 
We solve the numerical discretization of these equations in an implicit form (i.e., 
using Newton’s method) and obtain all components of Q simultaneously. 

For the upwind discretization used in the approximation of the conservation 
equations and for the implicit method of solution to be discussed laser the eigen- 
values of the 4 x 4 Jacobians 

/&E aF 
aQ’ B=T&j, C-E -aQ 
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are needed. They are obtained by diagonalizing the matrix 

V=n,A$n,B+n,C. 

The similarity transformation which gives 

v= PAP-‘, 

is achieved by the matrices P and P-’ given by 

l-2 Tl 0 0 

P= 
n, + ul, n, +uA, -n2 -n3 
n2 + IA, n, + ol, n,+n, -n3 

n3+wil, n3+Wl2 -n2 nl+n2 1 

(8) 

(9) 

2, T, -nl T, -n2T, -n3Tl 
p-l= -Al T2 nlT2 nzT2 n3 T2 1 

(n3a31 + n12hYn @I TO - Tdn (4T12 + U/n n3 Tdn r,’ 
(n2a41 +n13b)/n h TM- T&n n 2 T3dn (n3 T3, + W/n 1 

(10) 
Here we have introduced 

T,= ii-&, T,= 6-A,, n=n,+n,+n, 

TN= T, T,(T, - T,), Tz = T, T2 Z 

al2 = nl + n2, n13=n,+n3 

ml = (P31- P2lh m2=(p32-p22) 

m3 = (~~1 - p21)T m4=(p42-P22) 

a31 = p41 m2 - P42ml F 631 = P21 P32 - P22P31 

a41 = P31m4 - P32m3y b,, = P21 P42 - P22 P41 

T12 = T,m, - T2m2, T34 = T,m, - T2m4, 

where the pv are the elements of P. The diagonal matrix A is given by 

A=diag(A,,A,,A,,A,)=diag 
o-z o+z 1 A 
2’2, U, U 

> 
, 

where 
Z=(02+4(n~+n~+n:))“2 

U=O+O 

ii=n,u+n,u+n,w 

O=nn,u+n26+n3w. 

(11 
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Setting n, = 1, n2 = rz3 = 0 provides the eigenvalues of A. Using rz2 = 1, n, = rz3 = 0 
and n3 = 1, n, = n2 = 0 yields the &, i = l( 1)4 of the matrices B and C, respectively. 
Equations (9) and (10) are used to orient the upwind discretization according to 
the sign of the eigenvalues of the matrices A, B, C. Equations (11) (8) (9) (10) are 
also valid in a nonrotating frame, obtained by setting 52 = 0 and hence U = u. 

3. BOUNDARY CONDITIONS 

To define the continuous problem completely we must specify boundary condi- 
tions and the parameter values Re, q, ZY 

The velocity components at the surfaces of the inner and the outer cylinder are 
given by the no-slip condition. In the z- and &coordinates periodicity is imposed 
on all the velocity components and on the pressure. Since higher order differences 
are used (see Section 5.1) to discretize the equations we find that one additional 
condition or constraint can be imposed at each mesh point on the cylindrical 
surfaces to make the number of unknowns and number of equations the same. We 
use what can be viewed as Neumann conditions on the pressure obtained from 
the radial momentum equation. In summary, these conditions are: on the inner 
cylinder, r = rs, IzI 6 r/2, 0 < 8 < 2rc/q, 

4rs, 6 z) = 0, dr,, 0, z) = 1, 
(12) 

Nr,, 8, z) = 0, p,(r,,8,z)=~+Re~‘u,; 
s 

on the outer cylinder, r = rl, jz[ d f/2, 0 < 9 <2x/q, 

4rI, 0, z) = 0, u(r,, 4 z) = 0, 
w(r[, 4 z) = 0, p,(rr, 0, z) = Re-‘u,,. 

(13) 

Of course, in the pressure conditions we have used, the fact that u, = 0 as a conse- 
quence of the continuity equation (i.e., the incompressibility condition). According 
to the infinitely long cylinder assumption, periodicity of the flow with period r in 
the axial coordinate direction is imposed as: top, bottom, z = r/2, z = -r/2, 
rs d r < rl, 0 d e d 2nlq, 

Q(r,e,g)=Q(r,e, -5). (14) 

Thus only an even number of vortex cells can occur in a solution of (1) or (5) 
which satisfies (14). Periodic boundary conditions are also given in the azimuthal 
direction: front, back, 8 = 0, 8 = 2x/q, rs < r < r,, IzI < r/2, 

Q(r, 0, z) = Q (r, $, z). (15) 
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Couette flow, given by 
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u=w=o 9 

? ri r 
0=-f-q y-r, ’ ( > 

(16) 

is an exact solution of the Navier-Stokes equations (1) or (5) and the boundary 
conditions (12) to (15). This solution exists for all Reynolds numbers Re but is 
stable only for small values. At a certain critical Reynolds number Re,, whose value 
is a function of q, r, two-dimensional Taylor vortices bifurcate from the Couette 
flow as Re increases. With further increase of Re these Taylor vortices become wavy 
in the azimuthal direction. These are the three-dimensional travelling-wave flows we 
seek to compute. The boundary conditions given in Eqs. (12) to (15) are satisfied 
by both Taylor vortices and wavy vortices. 

4. CONSTRAINTS AND CONTINUATION PROCEDW 

When seeking travelling wave solutions with respect to 8, or equivalently seeking 
steady solutions in a rotating frame, a new unknown, the rotation speed, Sz, is 
introduced. We also note that the phase of this wave is arbitrary since the equations 
are autonomous with respect to the 8 and t variables. Any solution of this problem 
will thus be nonunique to within additive constants in 8 and t. Since these variables 
only occur in the combination cp = 13 - Qf the nonuniqueness is one-dimensional. 
To remove this indeterminacy we can impose a single scalar constraint. Many con- 
straints could be applied but we employ one due to Doedel [9] that has proven 
quite useful in the study of periodic solutions of autonomous ordinary differential 
equations. The condition is to minimize the change in phase as the solution changes 
with Re. That is if Q(Re,; r, cp, z) is a solution at Reynolds number Re, we seek 
Q(Re; r, cp, z) for Re near Re, such that 

e,;r,cp,z)-Q(Re;r,cp+&,z)ll:dzrdrdqo 

is minimized with respect to 6~ in [0,2x/q]. The usual variational argument to find 
this minimum yields the condition 

Obviously this condition is satisfied by all Couette and Taylor-vortex flows, since 
they are independent of cp. 
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The system to be solved is composed of a discretization of (5), (17), and the 
boundary conditions. The specific forms of the dicretization used are described in 
Section 5. In a compact form the resulting system can be written as 

H( Q, 8; Re) = 0 
(18) 

T(Q)=O. 

Here Q(l, 8, z) and Sz are to be determined while Re is the parameter to be varied. 
For the present we assume q and r to be fixed. We present solution methods which 
allow us to vary all parameters but, in particular, we concentrate here on varying 
only Re. Specifically we use Keller’s pseudo-arclength continuation method [ 121, a 
particularly effective continuation procedure. 

The solution branch is determined by a predictor-corrector procedure. The solu- 
tion path may be parametrized either by the natural parameter, Re, or by a new 
pseudo-arclength parameter, s. Indeed both parametrizations are used, Re being 
preferred, but a switch to s occurs when continuation in Re encounters difficulties 
(i.e., at simple folds or at some bifurcations). There are several choices which can 
be made at each stage of a continuation step. In our particular application, the 
linear systems which occur in the linearization process are so large that we avoid 
direct solution of such systems. Thus we do not ever employ the tangents to the 
solution paths but rather replace them by secants determined by the latest pair of 
solutions on the branch being computed. These secants are in fact reasonable 
approximations to the tangents if the step lengths, ARe or As, are small and we use 
them only in the predictor stage. We discuss here only a form of pseudo-arclength 
continuation; the simpler natural continuation which we also use is easily deduced 
from our discussion. The new parameter s in terms of which we seek to compute 
solution branches (Q(s), G?(s), Re(s)) allows us to introduce another scalar con- 
straint, say 

N(Q(s), Q(s), Re(s); As) = 0. (19) 

Numerous choices for N( .) are given in the literature [12] but, as mentioned 
above, we use here what may be called norm continuation [S], in which 

N(Q, 52, Re; As) = (IlQ - Q. II* + (Re - Reo)* + (Cl - f2,,)*)l’* - As. (20) 

Here (Q,, Sz,, Re,) is a known solution at s = s,, on the solution branch and we 
seek a solution at s = so + As which is, in norm, a distance As away from the prior 
solution. 

Our secant-norm continuation methods now proceed, assuming we have deter- 
mined two solutions Q, at s = s, and Q, _, at s = s, _ 1, as follows. The predictor 
at s,+~ = s, + As, is taken as 
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Q:+,= Q.+(Q.-Qn-I)-+ 
n-1 

f-J:+1 =l2,+(Q,Q._,)-$ 

n 1 

RL =Re,+(Re,-Ren-l)*. 
n-l 

(21) 

The step size As, is determined by an adaptive algorithm similar to the procedure 
given in [2]. The corrector step is carried out with Newton’s method applied to 
(18), (19) to get the corrections 

(22) 

and then 

Q “+‘=,“+,,” 

52 v+l=Q”+,Qv 

Re ‘f’=Re’+ARe”. 

(23) 

Here v denotes the iteration step, H, is an M x M matrix, H,, HRe, H, T,, N,, 
AQ E R”; T, N,, NRe, N, AO, ARe E R, and M is the number of unknowns on the 
grid. Although H, has a band structure, the full coefficient matrix in (22) does not, 
since the last two rows and the last two columns are almost full. 

In the following the superscript v is dropped for convenience. Solution of (22) can 
be obtained by several methods. One possibility is Keller’s bordering algorithm 
which can take advantage of the band structure of H, and proceeds as follows. 
Solve for CI, /I, y from 

H,ci= -H, H,B=&, H,Y =Hm (24) 

PI = T,Bv ~2 = T,Y, p3=TQu+T, P~=N,D-N, (25) 

and the solution is 

AR,P3-P2ARe 
PI 

AQ=u-yARe-/IAL?. 

(26) 
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If direct methods of solution are used this procedure is very elegant. Only one LU 
decomposition of the matrix H, is necessary to compute all three vectors 6, fi, y. 
The subsequent determination of the two scalars ARe, Al2 and of the AQ vector is 
done for relatively little computational costs. It can be shown [23] and it has also 
been observed that even if the Jacobian H, is singular, e.g., at simple limit points 
(see Fig. 7, point A), the bordering algorithm (25) is reliable if some good pivoting 
strategy is used in factoring H,. The drawback concerning the direct solver, 
however, is that for higher dimensional problems the necessary storage capacities 
for the L- and U-factors of H, are too large for current computers (even using 
sparse matrix solvers). 

Therefore we apply iterative methods to solve Eq. (22). In this case it is generally 
very costly to calculate the vectors a, /I, y, since H, is not stored in a factorized 
form. Thus it is very important to decrease the number of the computationally 
intensive matrix-vector equations. For that reason we first estimate a new value for 
ARe, say ARe’, and in the following iteration steps we use for ARe’ the value from 
the previous iteration ARev- ‘. Hence in place of (22), with ARev-’ 
known, we need only solve for AQ” and 452’ from 

y; yy>‘= -(,.+ff,,,e”-1). 

This can be done using the bordering algorithm in which we now solve 

H&a= -H’-H”,,ARe”-‘, H’efl=H; 

and then form 

AQ’=TVpa+T 
TQP ’ 

AQ’=a-~ASZ’. 

Using these results in the last row of (22) we get 

ARe’ = -N” + Nb AQ’+ N; AG’ 

NYRe 

assumed 

(27) 

(28) 

(29) 

(30) 

This procedure works fine if the ARe step is not too large. To carry out (28) to (30) 
we must solve two systems with coefficient matrix H,. This is one less such system 
than in (24) and fewer operations are required to determine A!S, ARe, AQ than in 
using (25). There is no difficulty in traversing and locating fold points with this 
reduced bordering method. 

We could switch the above procedure and solve first for AQ and ARe, that is, 
interchange the roles of A52 and ARe. But the indicated method did not show any 
convergence problems so we did not try to alter it. A more desirable procedure 
would be one in which only one system with coefficient matrix H, had to be solved. 
Unfortunately the system in (22) does not allow this since the reduced system for 
(452, ARe) after AQ is computed, would be singular. The trouble of course is that 
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the phase constraint, T= 0, does not vary with Al2 and thus there is no “natural” 
pair of equations to solve for the (AC?, ARe) variation. There are artificial ways in 
which this could be done but they do not seem to be robust. Thus we have used 
the scheme given in (28) to (30). 

To compute the axisymmetric Taylor-vortex flow the angular velocity Sz can be 
dropped in system (18), (19). The simplified resulting version of (22) reads 

(31) 

If the Reynolds number Re is given system is 
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All derivatives occurring in D, D, AQ, DRe, T, TQ AQ are approximated by 
centered differences, e.g., 

(32) 

where Ax represents the step size in the radial, axial, or azimuthal direction. To 
approximate the terms aA AQ/ar etc. in the Jacobian H, a first-order accurate 
upwind discretization is used. The eigenvalues, (1 1 ), of the matrix V in (8), control 
whether forward or backward differences are applied. That is we split the diagonal 
matrix ,4 into positive and a negative parts, as first done in [20,22], 

A=A++A-, /j+=“‘14 
2 

and multiply by P, P-’ in (10) to get the split Jacobians 

(33) 

V” =p/f*p-1; v= v+ + v-. (34) 

Forward and backward differences are then used as follows 

/al’+ AQ\ (V’ A 
I. . .\ 

(baCkWard), 

(forward). 
(35) 

Roe’s scheme [ 193 is applied to the terms aE/&, aF/aO, iYG/az in the Navier-Stokes 
equations; i.e., the term aE/ar is approximated by 

E(Qi+ 1/2)-E(Qi-l1/2) = A(Q. 
Ar 

,+ 1,2, Qi- 1,2) “+ li2;Fi- ‘I’. (36) 

One choice for evaluation of A in (36) is the Roe average: 

A(Qi+ l/29 Q,-,,,)=A Q~+w; Qi-~2). 
( 

Taking into account the splitting of A via (33), (34), we obtain 

E(Q~+,,~)-E(Q~-~/z) 
Ar 

Qi', 1/2 - QL 1/2 
=A+(QL,,, Q&2) Ar 

(37) 

+A-(Q,,,,, Q,~,,2)Q’~1,2-Q’~1;2. 
Ar (38) 
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The accuracy of the approximation is determined by the interpolation used for 
Qi”, l/z. Second-order accuracy is achieved by using 

QL 1/z =Qi+((l+~)(Qi+1-Qi)+(l-~-)(Qi-Q,~1))a 

Qi+_,,z=Q;-l+((l+~)(Qi-Qi~,)+(l-~)(Qi~,-Qi~~))d 
(391 

and similar expressions for Q,; 1,2. A centered scheme results for K = 1, a fully 
upwind scheme follows for rc = 11, and K = 0 yields an upwind biased discretiza- 
tion. The fluxes F, G are treated analogously. 

In the radial and axial coordinate directions we choose K = 1, while we set 
K = - 1 for the azimuthal derivative. The one-sided difference scheme in the circum- 
ferential directions is used in order to avoid a checkerboard instability; note that it 
retains second-order accuracy. 

A discretization of the vector 
H ,a it- 

(3 R as2 rae 

consistent with the approximation of the 

term in the linearized Navier-Stokes equations is achieved by using 

H ~E,+(Q,=,,z-Q,+_,,,)+B,(Q,,,,-Q,,,,, 
D rA0 (40) 

Since the analytical computation of Bz is very costly it is calculated numerically as 

B’ z~*w++wQ) 
R E (41) 

Here E 4 1 and the complete expression for H, reads 

+(B-(R+E)-B-(B))(Q*,~,~-Q,,!,,I~. (42) 

The boundary conditions at the cylinder walls are discretized with second order 
accurate one-sided differences. At the inner cylinder one obtains, e.g., 

Pr(rs, 4 2) g 
-3P, +4P*-P, 

2 Ar 

- u,,(r,, 8, z) z 8u, uj 
2. 

(43) 

Similar boundary approximations are used at the outer cylinder surface. 
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In the incompressible Navier-Stokes equations the pressure is determined to 
within a constant. Its value is fixed by setting the average pressure equal to zero 

(44) 

The discretizations described above applied to (22) yield first-order accuracy in the 
coefficient matrix but second-order accuracy in the right-hand side. Convergence of 
the Newton iterations is defined using H,, the indicated discrete from of the 
Navier-Stokes equations (5), as 

IIH~IIzG~~ z O(h2) < 1. (45) 

When this is satisfied, the solution of the Navier-Stokes equations is approximated 
to second-order accuracy. 

The discretization results in a block-heptadiagonal system of equations in (28) to 
(30) and (3 1). These are solved with a line Gauss-Seidel relaxation scheme in alter- 
nating directions applied collectively to the solution vector. As mentioned above we 
use the multigrid technique [3] to improve the rate of convergence of the iteration 
process. It is, however, crucial for a successful application of the multigrid concept 
to have a relaxation method that efficiently smooths the high frequencies in the 
Fourier modes of the error. Comprehensive studies for the compressible Navier- 
Stokes equations have shown the block-line relaxation we use to be such a scheme 
[21]. Even if the coefficients in the discrete system exhibit variations of several 
orders of magnitude the method maintains excellent smoothing properties. 

5.2. The Multigrid Concept 

The multigrid technique has many different aspects which are of interest, only 
one of which is the improvement of the rate of convergence. When problems in 
three space dimensions are being investigated, multigrid can be used to reduce 
the storage requirements. Thus, for example, it is possible to solve Eq. (22) on the 
coarsest grid with a direct method applied to the bordering algorithm (25). Because 
of the excessive storage, this is absolutely infeasible on the finest grid even with 
current supercomputers. In a multigrid procedure only some relaxation sweeps are 
necessary on the finer meshes, not direct solutions. There is hardly any difference 
in the convergence behaviour if the equations on the coarsest grid are solved 
iteratively or directly. Thus we only use direct solvers on the coarsest grid for some 
of the Taylor vortex solutions. 

In the following the multigrid concept in the full approximation storage (FAS) 
scheme [3] is described by applying it to a model equation 

L@ln=fm. (46) 

Here the subscript m defines the finest grid level G,, while L, represents an 
approximation to an operator by a matrix, e.g., H, in (3 I), and Grn, f, are vectors, 

581/91/l-15 
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e.g., A Q, - H in (3 1). The corrected difference equation on coarser grids 1 < n < m, 
as devised by Brandt [3], are 

L@n =f, (47) 

with 

fn=rn+L”K+l@n+l). (48) 

The term 

rn=ZZ::+Irn+l=ZI::+l(fn+I-L n+l @n+l) (49) 

denotes the restricted residual of the line-grid equation 

L @n+l=fn+l. n+l (50) 

On every grid level some relaxation sweeps are performed. The discrete problem on 
the coarsest grid n = 1, 

L,@,=fl~ (51) 

can be computed either directly or iteratively. In this study we solve Eq. (51), if not 
otherwise mentioned, with the same iterative scheme used to relax the line-grid 
equation (46). 

Subsequently, the correction 

COR=@,-Z;+l@P,+, (52) 

is evaluated by linear interpolation, Zz + ’ on the liner grid G, + i, as 

0” = CD, + c+ ‘(COR), (53) 

followed by some relaxation sweeps on every grid level. Such a V-cycle is completed 
when the finest grid G, is reached. 

The step size on the coarse grids results from doubling the space steps of the next 
liner mesh (h, = 2h, + i , 1 6 n < m). The symbols Zi + , , Zc + i represent restriction 
operators to transfer the variables and the residuals from G, + i to G,, 1 < n < m. 
We use for Z; + 1 simple injection, 

I:+1 = 1, (54) 

and for ZZ; + i full weighting formulated in cylindrical coordinates as 

ZZ;,, E-&-{ ~~~~k~}, where Z’=( 2!:!, 2:. $::). (55) 
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At the cylinder walls, ZZ:, i is given by 

ZZ;+l=$---{:~~;:i. where Z’,,,=(< {i). (56) 

When r = rs (inner cylinder) we use the values r,, = ri = rs and r2 = rs + Ar, + 1 ; 
when r = r, (outer cylinder) we use the values r0 = r2 = rI and rl = rl- Ar”+ ‘. 

This multigrid procedure combined with a collective line Gauss-Seidel relaxation 
is used to efficiently invert the Jacobians H, in the systems of Eqs. (28) to (30) and 
(31). Since the FAS scheme is employed, the quantities AQ and ARe can be 
evaluated on the finest grid G, or on the coarsest grid G,. Yet, if they are com- 
puted on G,, one has to bear in mind to use a linearized integral constraint (17) 
and a linearized pseudo-arclength condition (20) containing the residuals of the 
line-grid equations; i.e., their coarse grid equations have to be modified as given in 
(48). Both possibilities, calculating 452, ARe on G, and G,, were conducted in 
some test computations. Since no significant difference occurred in the computa- 
tional costs, AL2 and ARe were determined on the finest grid for all results presented 
in this investigation. 

The boundary conditions are used at each level of the multigrid cycle. Procedures 
(46) to (56) are applied to the pressure and periodicity conditions in (12)-(15) so 
that the calculation of the boundary values on every grid level is consistent with the 
solution of the equations in the interior of the integration domain. In the iteration 
the boundary conditions are treated explicitly. That is, the boundary values are 
updated only after the values at interior points have been iterated. As a conse- 
quence, the solution vector Q has all its components at the same order of accuracy 
only when the iterations have converged. 

6. SWITCHING BRANCHES 

6.1. From Couette to Taylor- Vortex Flow 

To determine one point on the Taylor-vortex solution branch for a given 
Re = Re,, we perturb Couette flow by superposing on the radial and the axial 
velocity components perturbations of the form 

u(r, z) = -El 4(r - rJ(r - r,) 
(rl-rs)2 cos(n(l-$)) 

w(r, z)= -cl sin 
( ( 

;(r~r:~~y”))sin(7r(l-$))/(r1-r.)). (57) - 

Here s1 = 0.01 is the amplitude of the perturbation. One reason for this form of the 
perturbation is to prescribe an artificial vortex pair which satisfies the boundary 
conditions. Obviously, this can be achieved by other perturbations as well. The 
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resulting flow field is the initial distribution for the computation of Taylor vortices. 
If the perturbation decays after a few iteration steps, v, and the computation returns 
to the Couette branch, the procedure is repeated for Re, > Re,. After a solution on 
the Taylor-vortex solution branch is obtained, continuation at the next step, 
Re n+l = Re, + ARe is done using the solution for Re, as the new initial guess. Sub- 
sequently, Keller’s continuation method (Eq. (21), (31)) is used to continue the 
solution branch. Our procedure for finding a solution on the Taylor-vortex branch 
is very insensitive to the form of the perturbation. In several tests only the radial 
velocity component or the axial velocity component was perturbed and the 
amplitude was varied between 0.005 < .sl < 0.05. In each case the same Taylor- 
vortex flow field was obtained. 

6.2. From Couette to Wavy-Vortex Flow 

There are several ways in which we could switch from the branch of Taylor- 
vortex flows to the branch of wavy-vortex flows [12]. The easiest (i.e., computa- 
tionally least intensive) is perhaps to use the simple continuation methods indicated 
in Section 6.1. These require that one solution on the wavy-vortex branch is already 
known and is close to the Taylor-vortex branch. To obtain such a solution we solve 
the time-dependent Navier-Stokes equations using initial data that is a perturba- 
tion from Couette flow and has the form of a wavy Taylor vortex. The 
Navier-Stokes equations are formulated such that an automatic switch from an 
inertial system to a rotating frame of reference is feasible. This procedure seeks to 
go directly from Couette flow to a wavy-vortex flow. We must determine when the 
computations have converged to a steady travelling wave and what the speed of the 
wave is. Procedures for doing this are described below. 

The numerical scheme is implicit in time and employs Newton’s method to com- 
pute the solution at each new time step. The scheme is thus unconditionally stable 
and places no Courant condition on the time step At, = t, - t, _ r. In detail we first 
discretize the Navier-Stokes equations with respect to time to get the semi-discrete 
second-order accurate form 

= 0. (58) 

Here the superscript v defines the iteration. We expand in AQ’ and drop quadratic 
and higher order terms (i.e., we linearize) to get, using the splitting notation of 
(34)v (38) 

+a(C++C-)AQ 
aZ (59) 
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where 

The spatial derivatives are approximated by upwind and centered differences as 
described in Section 5.1. Note that the system (59) does not contain an artificial 
compressibility term. Hence even for computing unsteady solutions no additional 
iteration sweeps are necessary to satisfy the continuity equation. 

The resulting discretized form of (59) is again solved by using a collective line 
Gauss-Seidel relaxation in alternating directions as smoother in a multigrid 
procedure. The interpolation and restriction operators are the same as those 
in Section 5.2. After convergence, i.e., the discrete right-hand side satisfies 
IIRf=AII,~%= O(h2) < 1, the approximation is of second-order accuracy in time 
and in space. We found that after the first few time steps, about two relaxation 
sweeps on the finest grid suffice to satisfy the convergence test between the time 
levels. Thus the complete multigrid procedure is not required. 

Initial data at t = to, say, must be specified to start the above time marching 
scheme. We use a form that is analytically simple to generate and similar to the 
observed wavy-vortex flows. In brief we perturb Couette flow by a Taylor-vortex 
like (toroidal) velocity field as in (57), but this perturbation is in turn perturbed by 
imposing a periodic e-variation in the z-coordinate direction. More precisely the 
initial perturbation to Couette flow is taken as 

(60) 

(r[ - r,). 

Here the waveness of the perturbation is determined by 

a(e) 3 sin(&). (61) 

The parameters si and s2 are the amplitudes of the perturbations; the integer m 
determines the number of azimuthal waves in the integration domain: 0 < 8 < 2x/q. 
In most calculations we used c2 = ?J, m = 1 or 2, and q = 2 or 4. 

After proceeding for 300 or so time steps we begin to test for convergence to a 
travelling wave solution and to determine the speed, Sz, of the wave. We write, for 
an iterative computation of Q, 

Q”=n”-‘+Lm”. (62) 
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The initial value $2’ = 0 corresponds to a nonmoving frame of reference since, using 
L2 = 0 in (59), g(Q) = F(Q, 0). The computation of 452’ proceeds by approximating 
at some time t = t, and some fixed azimuthal grid value, 8 = ok, a functional of the 
solution, say 

Z(t,, e/J = j” jr’* u( t,, r, z, 0,) dz r dr. (63) 
i-r ~ r/4 

The integration domain here covers only $ of the cross-section, in the (r, z)-plane, 
of the z-periodic flow. This is done to make sure that Z(t,, 0,) # 0. In addition ok 
is chosen to place the maximum radial velocity near z= 0, the center of the 
z-period. 

At each of the next M time steps we also compute the above integral but at 
several adjacent cross-sections, say 8, * i, ok. Using interpolation between the 
values thus computed we seek the value 0 = ok,,, for which 

Z(t n+mT ek,m)=mn+m--l, ek,m-l)T m = 1, 2, . . . . M. (64) 

Potential values for 452’ are now computed from 

(65) 

A better approximation is taken to be the average of these speeds 

(66) 

We usually use M= 5 and renew the angular speed $2 after 10 time steps. The solu- 
tion is said to be a steady-state solution (a/at + 0) if the two conditions 1 Af2”J < Ed, 
cn<l and Il~~-1-~n-l/At,l12~~Q, so < 1 are satisfied. Hence, the code is 
designed to switch automatically from an inertial coordinate system in which the 
wavy vortices are periodic solutions in time and in 8 to a frame of reference rotating 
with the angular velocity C2 in which the travelling waves are still periodic in 8 but 
time independent. 

When the above procedure converges we have obtained one travelling wave solu- 
tion and then continuation along the branch of wavy Taylor-vortex solutions is 
initiated. The unsteady procedure indicated above has been used to obtain a wavy- 
vortex solution for q = 0.875, r= 2.54 at a Reynolds number Re = 180. 

7. RESULTS 

The multigrid method employed consists of one relaxation sweep before the 
restriction, two sweeps on the coarsest grid and one after the prolongation. 
Generally two V-cycles s&ice to perform a complete v-th iteration step for the 
system (22) (i.e., to compute one Newton step). 
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z 22 7.4 7.6 7.8 8. R 

FIG. 4. Angular momentum rfi as a function of the radius r for Re = 139.31, q = 0.875, r= 2.5. Solid 
line: Marcus [ 151; crosses: current multigrid method. 

7.1. Taylor- Vortex Flows 

First we compute axisymmetric Taylor-vortex flows using our three dimensional 
code to check the accuracy of the approximation and to ensure the applicability of 
the iterative continuation method. 

A comparison with the angular momentum distribution rfi -f(r) in a Taylor 
vortex computed by Marcus [ 151, where r? is axially and azimuthally averaged, is 
presented in Fig. 4. The geometrical and the flow parameters are Re = 139.31, 

RS RL 
R 

FIG. 5. Azimuthal velocity profile u(r, BO, zO) for Re = 400, q = 0.833, f = 1.05. The radial velocity 
component vanishes at (r, 8, z,,). Here we use 8, = n/q. Solid line: Meyer [ 161; crosses: current multigrid 
method. 
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q = 0.875, r= 2.5. Marcus employed 33 radial Chebyshev polynomials and 32 axial 
Fourier modes while our difference solution is based on a grid with 17 x 17 x 17 
points in r, 8, z. For such a coarse mesh the very good agreement is somewhat 
surprising. 

The next example is at a much higher Reynolds number, Re = 400 and 4 = 0.833, 
r= 1.05. In Fig. 5 we show a comparison with Meyer’s [16] results for the radial 
variation of the azimuthal velocity u(r, z) in a Taylor vortex along the radius at 
z=zo, where the radial velocity vanishes, that is, where a(~, zO) = 0. Meyer uses a 
40 x 40 grid and a second-order accurate difference scheme. Our results employ a 
33 x 17 x 33 mesh in (r, 8, z). The results shown in Fig. 5 were the same in each 
(r, z) section B = 0, of our calculation. 

Figure 6 shows a comparison with the transition from Couette to Taylor-vortex 
flow in a narrow gap, q = 0.95, with r= 2.007 computed by Meyer-Spasche and 
Keller [17]. Again we employ the 33 x 17 x 33 mesh at the finest level in a three 
level scheme. For these results the Newton iterates on the coarsest grid were com- 
puted both iteratively and directly (using LINPACK routines DGBFA, DGBSL). 
The convergence behaviour was similar for both methods. The graph in Fig. 6 com- 
pares a(~*, z*) at r* = r, + S(r! + r,), z, = f/2 computed in [ 171 with the azimuthal 
average tl(r,, z*) = (l/K) C:= i u(r*, 8,, z*) of the u(r*, 8,, z*) in the current 
calculations. The Reynolds number was varied and at aboutRe z 183 Couette flow, 
with u=O, bifurcates into Taylor-vortex flow, with u #O. To get a more accurate 
location of the bifurcation value Re = Re, = 184.86 in [ 171 the minimum continua- 
tion step As has to be reduced. 

Figure 7 shows the bifurcation from Couette flow as Re varies while q = 0.875 
and r= 2.54 are fixed. The same three level multigrid described above was used. 
Initial perturbations as given in (57) were applied to Couette flow at Re = 150 with 
both positive and negative amplitudes. Each yielded a steady Taylor-vortex flow on 
one of the two bifurcating arcs shown in Fig. 7. These arcs are not symmetric with 
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FIG.‘ 6. Radial velocity component U = (l/K) z: u(r *, Q,, z.+) as a function of the Reynolds number 
Re for q = 0.95, I-= 2.04l7. CF: Couette flow; TVF: Taylor vortex flow. Solid line: Meyer-Spasche and 
Keller [ 171; crosses: current multigrid method. 
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FIG. 7. Radial velocity component U = (l/K) zf u(r*, ok, z*) as a function of the Reynolds number 
Re for q = 0.875, r= 2.54. CF = Couette flow; TVF = Taylor vortex flow. Branches I and II show the 
asymmetry of TVF with respect to CF. 

respect to Couette flow as a result of the different interaction of the centrifugal force 
and the radial momentum on branches I and II. Continuation was used on each arc 
for increasing and decreasing Re. The transition to Couette flow as Re decreases 
shows the phenomenon of perturbed bifurcation, here caused by the crude grid 
and/or the one sided azimuthal differencing. But there was no difficulty on branch 
II of traversing the fold (point A in Fig. 7) with multigrid continuation. The bifur- 
cation occurs at Re, = 118.2 according to [S] and we obtain Re E 118. Our 
accuracy was enhanced by using a 65 x 17 x 65 mesh around Re E Re,. 

7.2. Wavy- Vortex Flows 

All the wavy-votex flows were computed for the geometric parameter values 
q = 0.875 and r= 2.54 in order to compare with the experiments of Coles [4]. The 
finest mesh used was 17 x 33 x 33 in the (r, 0, z)-coordinates, respectively, in a 
three-level multigrid procedure. The 0 interval employed was 0 < 8~ K and the 
azimuthal period sought was n/2. Thus two full wavelengths are contained in our 
calculations and it was possible for the wavelength to double as Re was varied. This 
latter phenomenon, however, did not occur in this study. 

Three-dimensional travelling wave flows are computed over the Reynolds 
number interval 130 < Re < 201. In Table I we compare our computed and the 
measured [4] angular speeds, B(Re), of the travelling waves over 180 < Re < 201. 
This interval is fairly close to the value Re, z 140, where wavy vortices bifurcate 
from Taylor vortices in Coles’ experiment. Hence the Q(Re) variation is much 
greater here than it is for more remote Re-intervals, see [4, 133. Our agreement 
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TABLE I 

Comparison of Computed 
and Measured a/w [4] 

Re Computed sZ/w Measured Q/w 

201 0.410 0.411 
190 0.415 0.416 
180 0.42 1 0.424 

Note. Wave speed D in units of the 
rotation speed w of the inner cylinder for 
different Reynolds numbers Re. 

with the experiment is good, the maximum difference is less than 0.5%. In par- 
ticular we computed the rotation speed at Re = 180 by solving the system (22) as 
well as by the iterative correction procedure of (62) to (66). The former gave 
Q( 180) = 0.4210 and the latter gave Q( 180) = 0.4220. We note that the experiments 
are not done with infinite cylinders but have endplates. Thus the aspect ratio r of 
the calculations cannot be rigorously compared to any geometric ratio in the 
experiments. Nevertheless Figs. 1 and 2 show how closely the experiments produce 
Taylor and wavy vortices that seem quite periodic over large z-intervals. 

We illustrate the transition from Taylor-vortex to wavy-vortex flow in Figs. 8a 
and 8b. First we plot the variation with Re of (i%/LJtl)(Re),,, = maxi,j,,(&/aO) 
(ri, ok, zj; Re). This quantity changes drastically over 140 < Re < 160. Since our 
scheme is second-order accurate and we use d0 = 7~132 the resolution of the com- 
puted au/atl below 0( 10 -‘) is not reliable. But as Fig. 8a shows, the computations 
clearly determine the onset of travelling waves at Re z 136. Coles [4] observed 
transition to wavy Taylor-vortex flow at Re E 140. Perturbation computations by 
DiPrima [7] show the loss of stability of Couette flow to nonrotationally sym- 
metric disturbances to occur at Re z 130. 

In Fig. 8b the computed speed ratio of the travelling wave to rotation rate of the 
inner cylinder SZ(Re)/w is plotted versus Re. Coles found this ratio to be about 4 
at the onset of wavy-vortex flow; our results agree well with this observation. 

Figures 9a and 9b show contours of the azimuthal and axial velocities in the 
(0, z)-plane at r = r2 = rs + 2Ar for the three Reynolds numbers: Re = 154, 148, and 
142. The asymmetry of the wave in the &direction is much more evident in the 
u-contours than in the w-contours (which are scaled up by a factor 104). In Fig. 9b 
the switch from the dashed (w < 0) to the solid lines (w > 0) near z = 0 is the w = 0 
contour at which the radial velocity, U, is directed out (from the inner cylinder). 
This is frequently called the outflow boundary. The corresponding inllow boundary, 
i.e., w = 0 and u < 0, occurs near + r/2. A comparison of these outflow and inflow 
contours for a given Re shows the amount of phase shift in the wavy vortices at 
r = rz. This is an indication of the twisted or helical nature of the wavy vortex as 
it winds around the inner cylinder. 
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There is no sign in the results shown in Fig. 9 of a transition from a period n/2 
wave to a period K wave solution as Re decreases. The amplitude of the travelling 
wave is reduced but the wavelength is unaltered. We attempted to find a period rt 
wavy-vortex solution in 140 < Re < 150, but could not. This was done by using for 
some Re, in this range the speed O(Re,) found for the (n/2)-wave and a n-wave 
perturbation as initial data in relaxing (22). This “relaxed solution” was then used, 
with the integral constraint, to solve (28) to (29). But no travelling-wave solution 
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FIG. 8. a. Maximum e-derivative of the azimuthal velocity component versus Reynolds number. 
b. Wave speed a of the travelling wave in units of the rotation speed of the inner cylinder o versus 
Reynolds number. 
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FIG. 9. a. Contours of the azimuthal velocity component u(r2, 0, z; Re) at rZ = rs + 2Ar for three 
Reynolds numbers: Re = 154, 148, 142 (q = 0.875, r= 2.54). b. Contours of the axial velocity component 
w(rt, 0, z; Re) x lo4 at rz = rs + 2Ar for three Reynolds numbers: Re = 154, 148, 142 (9 = 0.875, r= 2.54). 
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was obtained. These numerical results agree with Coles’ experiments which show an 
immediate transition from the Taylor vortices to a period 7t/2 travelling-wave solu- 
tion. We do not rule out the possible existence of a period x wavy vortex but our 
cursory search has not found one. A more detailed study of this point will be made 
when more powerful computers are employed. 

In Figs. 10 and 11 we show the computed wavy-vortex flow at Re = 200 
(q = 0.875, r= 2.54). The contours in Fig. 10 indicate a much bigger amplitude of 
the wave than at Re = 154. While the level lines of the axial velocity component 
(scale factor 104) keep their sinusoidal shape the asymmetry in the contours of the 
azimuthal velcoty component becomes more evident. Up to now it is not clear 
whether the steepness in the v-contours is part of the reason why the (n/2)-wave 
vansihes in the experiment [4] in 201 < Re < 600. In Fig. 11 the vector plots of the 
radial and the axial velocity component computed for several (r, z)-planes in 
0 < 8 < n/2 show the strong deviation of the flow structure of the vortex cells in the 
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FIG. 10. Contours of: (a) the azimuthal velocity u(rz, 8, z; Re); (b) the axial velocity 
w(r2, 0, z; Re) x lo4 at r2 = I, + 2Ar (Re = 200, q = 0.875, I-= 2.54). 
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FIG. 11. Vector plot of the radial and axial velocity component in the (r, z)-plane for different values 
0 (Re = 200, q = 0.875, r= 2.54). 

wavy-vortex flow from the asisymmetric Taylor vortices. Especially the change in 
the locations of the center of the vortices (defined by u = w = 0) in the B-direction 
illustrates the complicated three-dimensionality of the travelling wave. 

8. CONCLUDING REMARKS AND OUTLOOK 

A multigrid-continuation method to numerically solve the incompressible 
Navier-Stokes equations in three space dimensions is presented. The convective 
terms in the conservation equations are approximated by one-sided differences con- 
trolled by the eigenvalues of their Frechet derivatives. The resulting diagonally 
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dominant coefficient matrix allows iterative solutions of the linearized equations. To 
simulate the transition from Taylor-vortex flow to wavy-vortex flow in the Taylor 
experiment, a steady travelling-wave formulation is used. This contains the wave 
speed as an unknown. The results (1) show that this boundary value problem 
formulation can be applied to compute wavy vortices and (2) confirm the direct 
transition from Taylor vortices to a four wave state flow observed by Coles. 

An extension of this steady formulation of the continuous problem will be used 
to locate the bifurcation point from the Taylor vortex flow to the travelling wave 
flow more accurately. By monitoring the eigenvalues of the linearized system (18) 
along the Taylor-vortex branch we also hope to show that wavy vortices develop 
from a Hopf bifurcation. Bifurcations to higher wave number solutions and period 
doubling are also of great interest. 
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